Defaults and lexical prototypes

Workshop on defaults in morphological theory
May 21, 2012

Rob Malouf
San Diego State University
Representations in HPSG are **typed feature structures**, a class of directed acyclic graphs.

An **attribute value matrix** is a description which picks out a set of these linguistic objects.

Each feature structure has a **type** associated with it.

Types are organized into a **signature** which specifies appropriateness and inheritance relationships.
Type hierarchies

Types are organized into an **inheritance hierarchy**, an ontology of object types.

The hierarchy is a **bounded complete partial order**: every pair of types have a unique least upper bound and there is a unique most-general-type.

```
animal
  /   
flyer  invertebrate  vertebrate  swimmer
     /  
    bee  fish
         /  
cod  guppy
```
Sort hierarchies

The inheritance hierarchy defines an ontology of linguistic objects (sorts):

- types and their relations (‘is a’ and ‘has a’)
- appropriate features
- appropriate values
- type inference

Provides a basis for precise and efficient implementation (Flickinger 2000)

This ontology is (mostly) arbitrary and (mostly) universal

This metalanguage is important but not by itself linguistically very interesting
Sort hierarchies

Grammar Matrix (Bender, et al. 2010)

```
Grammar Matrix (Bender, et al. 2010)
```

```
Sort hierarchies

Grammar Matrix (Bender, et al. 2010)
```
Sort hierarchies

Grammar Matrix (Bender, et al. 2010)

```
<table>
<thead>
<tr>
<th>avm</th>
</tr>
</thead>
<tbody>
<tr>
<td>sign-min</td>
</tr>
<tr>
<td>STEM    list</td>
</tr>
<tr>
<td>basic-sign</td>
</tr>
<tr>
<td>KEY-ARG    bool</td>
</tr>
<tr>
<td>sign</td>
</tr>
<tr>
<td>SYNSEM    synsem</td>
</tr>
<tr>
<td>ARGS      list</td>
</tr>
<tr>
<td>INFLECTED inflected</td>
</tr>
</tbody>
</table>
```
Lexical hierarchies

The type hierarchy is also used to define constraints on the lexicon and the inventory of constructions.

Classes of words can be the same in some ways and different in others.

Patterns of **sameness** can be reified as super-types, while **differences** are instantiated on lower types in the hierarchy.

Anything that is true of a type is also true of all of any more specific type.

Taxonomic approach to linguistic description.
Lexical hierarchies

```
lexeme

[verb_lxm
  HEAD verb]

[noun_lxm
  HEAD noun]

[intrans_lxm
  COMPS ⟨⟩]

[trans_lxm
  COMPS ⟨NP|...⟩]

[strict_opt_trans_lxm
  COMPS ⟨(NP)⟩]

[strict_ditrans_lxm
  COMPS ⟨NP, NP⟩]

[PHON /sit/
  SEM sit']

[PHON /fal/
  SEM fall']

[PHON /walk/
  SEM walk']

[PHON /see/
  SEM see']

[PHON /it/
  SEM eat']

[PHON /hit/
  SEM hit'
```
Lexical hierarchies

This style of representation associates patterns of sameness and differentness with particular types

Radial / family resemblance categories (Wittgenstein, Rosch, Lakoff, et al.) pose a problem

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>b</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>c</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

```
[thing]

[H -] [G +] [F +] [F -] [H +] [G -]

[a] [c] [b]
```
Default inheritance

Default constraints offer a solution to this problem.

We can state properties of a type which usually hold, but allow more specific subtypes to override that.

Anything that is true of a type is also true of all of any more specific type unless there’s a conflict.

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>b</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>c</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c}
\text{thing} \\
F + \\
G + \\
H + \\
\end{array}
\]

\[
\begin{array}{c}
a \\
\text{H −} \\
\end{array}
\begin{array}{c}
b \\
\text{G −} \\
\end{array}
\begin{array}{c}
c \\
\text{F −} \\
\end{array}
\]
Default inheritance

Defaults give us a mechanism for representing prototypes

Once we allow overriding, what does it mean to be a member of a category?

Two mechanisms for capturing similarities and differences
Prototypes

Inheritance hierarchies (with or without overriding) come from the same knowledge representation tradition as object-oriented programming.

Prototype-based programming is an alternative that has been gaining interest (Borning 1986, Lieberman 1986, Ungar and Smith 1987).

- No abstract classes, only fully specified objects
- All constraints are defaults
- New objects are defined differentially
- Objects are related to other objects via delegation
Prototypes
Prototypes

Inheritance

reflects an ‘is-a’ relation: a transitive verb is a kind of verb

default overriding is exceptionality

intensional classes and abstract prototypes

Delegation

reflects and ‘is-like’ relation: the lexical entry for walk is similar to the lexical entry for hit

default overriding is difference

extensional classes and concrete prototypes

Operationally, the two notions are more or less the same (Lascarides and Copestake 1999)
Prototypes

Some obvious problems

Grammar development

Is is possible to construct and maintain differential networks like this?

Types as generalization

A taxonomic approach to the lexicon encodes the fact that there are many more verbs than there are kinds of verbs

Multiple inheritance

Words and constructions can be related to each other along multiple orthogonal dimensions
Large scale grammar of English (Flickinger & Copstake 2000, Flickinger et al. 2000)

Implemented in the LKB

Organized around a large, detailed type hierarchy

Aimed at broad-coverage deep parsing and generation

English Resource Grammar

The included lexicon (lexicon.tdl) lists 8,472 verb lexemes representing 336 types.

Ten most frequent verb types account for 6,283 lexemes, and 135 verb types have only one member.

- v_np_le 1,723
- v_np*_le 962
- v_p-np_le 896
- v_p_le 506
- v_pp_e_le 494
- v_-_le 463
- v_np_noger_le 408
- v_-_unacc_le 325
- v_np-pp_e_le 322
- v_pp*_dir_le 184
Inverse power-law distribution (Zipf’s Law)
Inverse power-law distribution (Zipf’s Law)
Scale invariance: Sublexicon of 800 randomly selected verbs (96 types)
Scale invariance: Sublexicon of 800 randomly selected verbs (96 types)
The ERG covers only a small part of the English vocabulary. Even for words that are listed, entries are incomplete (Baldwin, et al. 2004). Suppose we constructed a lexicon with 100% coverage of the BNC... How many types would we need?
A verb frame is a bag of relations

persuade 〈 nsubjpass, advmod, xcomp 〉
drop 〈 xsubj, dobj 〉
A **verb type** is a collection of frames that a verb occurs in

<table>
<thead>
<tr>
<th>Verb</th>
<th>Structure</th>
<th>Frequency</th>
<th>Verb</th>
<th>Structure</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>persuade</td>
<td>xcomp</td>
<td>469</td>
<td>drop</td>
<td>nsubj dobj</td>
<td>594</td>
</tr>
<tr>
<td></td>
<td>xsubj xcomp</td>
<td>317</td>
<td></td>
<td>nsubj dobj prep</td>
<td>526</td>
</tr>
<tr>
<td></td>
<td>nsubj xcomp</td>
<td>316</td>
<td></td>
<td>nsubj prep</td>
<td>444</td>
</tr>
<tr>
<td></td>
<td>dobj</td>
<td>254</td>
<td></td>
<td>dobj</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>dobj xcomp</td>
<td>221</td>
<td></td>
<td>prep</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>dobj ccomp</td>
<td>144</td>
<td></td>
<td>dobj prep</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>nsubjpass xcomp</td>
<td>135</td>
<td></td>
<td>nsubj dobj</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>xsubj dobj</td>
<td>135</td>
<td></td>
<td>nsubj dobj advmod</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>nsubj dobj</td>
<td>126</td>
<td></td>
<td>nsubj advmod prep</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>nsubj dobj xcomp</td>
<td>112</td>
<td></td>
<td>nsubj prep prep</td>
<td>186</td>
</tr>
</tbody>
</table>

...
British National Corpus

Verb frames with the highest type frequency

<table>
<thead>
<tr>
<th>Frame</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>nsubj</td>
<td>15,982</td>
</tr>
<tr>
<td>dobj</td>
<td>13,611</td>
</tr>
<tr>
<td>nsubj dobj</td>
<td>13,574</td>
</tr>
<tr>
<td>nsubj ccomp</td>
<td>11,347</td>
</tr>
<tr>
<td>prep</td>
<td>9,879</td>
</tr>
<tr>
<td>nsubj prep</td>
<td>7,878</td>
</tr>
<tr>
<td>dobj prep</td>
<td>6,987</td>
</tr>
<tr>
<td>nsubj dobj prep</td>
<td>6,873</td>
</tr>
<tr>
<td>nsubj xcomp</td>
<td>5,980</td>
</tr>
<tr>
<td>nsubj dobj advmod</td>
<td>5,843</td>
</tr>
</tbody>
</table>
Applying this method to the BNC, we get

- 92,612 distinct frames
- 67,423 verb lexemes
- 28,778 verb types

For each lexeme, drop frames that occur fewer than 10 times:

- 4,399 distinct frames
- 67,423 lexemes
- 2,554 lexical types

And if we also only consider lexemes that occur at least 500 times:

- 4,398 distinct frames
- 1,546 lexemes
- 1,545 lexical types
British National Corpus

Verbs in the BNC do not appear to be organized into types

Is the lexicon structured at all?

 Verb frames could be interpreted as binary features which define ‘natural’ classes of verbs

 Or, verbs could be organized into differential network

What evidence is there for internal structure?
Spanning trees

A delegation network is a connected acyclic graph (spanning tree) joining all lexical entries.

Because lexical constraints are defaults, any network structure will work – but, not all are equivalent.
Spanning trees

Evaluate networks on the basis of shared information:

Measure the difference between joined lexical entries by Jaccard distance

\[J_\delta(X, Y) = 1 - \frac{|X \cap Y|}{|X \cup Y|} \]

This captures the degree of default overriding between joined entries

A link between identical lexical entries would have a cost of 0

Find a **minimum** spanning tree – one with the smallest possible sum of edge weights (Kruskal 1956)
The minimum spanning tree cost for BNC verbs is 597.00

Is that high or low?

Generate 100 uniform random (not necessarily minimum) spanning trees (Broder 1989, Aldous 1989)

Average sum of distances is 1227.69

Min is 1216.90 and max is 1239.14

Conclusion:

There aren’t many more verbs than there are types of verbs

Verbs also aren’t all unique

A differential network captures at least some of the structure in the verbal lexicon
Ginsberg and Sag (2000) present an analysis of a range of English interrogative constructions (and other related phenomena)

Detailed syntactic and semantic model based on HPSG and (more loosely) Situation Semantics

Constructions are organized into a multiple inheritance type hierarchy with a limited degree of default overriding

Location in the hierarchy specifies a constructions syntactic and semantic properties

Constructions

Declarative and interrogative constructions

<table>
<thead>
<tr>
<th>Construction</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>decl_hd_su_cl</td>
<td>Kim smiled.</td>
</tr>
<tr>
<td>inv_decl_cl</td>
<td>doesn’t Kim like ___</td>
</tr>
<tr>
<td>decl_ns_cl</td>
<td>to smile</td>
</tr>
<tr>
<td>decl_frag_cl</td>
<td>Bagels.</td>
</tr>
<tr>
<td>pol_int_cl</td>
<td>Did Kim leave?</td>
</tr>
<tr>
<td>ns_wh_int_cl</td>
<td>What did Kim see?</td>
</tr>
<tr>
<td>su_wh_int_cl</td>
<td>Who left?</td>
</tr>
<tr>
<td>repr_int_cl</td>
<td>You’re leaving?</td>
</tr>
<tr>
<td>dir_is_int_cl</td>
<td>Kim saw Sandy?</td>
</tr>
<tr>
<td>slu_int_cl</td>
<td>Who?</td>
</tr>
</tbody>
</table>
Constructions

Other clause types

<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>inv_excl_cl</td>
<td>Am I tired!</td>
</tr>
<tr>
<td>wh_excl_cl</td>
<td>how odd it is</td>
</tr>
<tr>
<td>ns_imp_cl</td>
<td>Be quiet!</td>
</tr>
<tr>
<td>top_cl</td>
<td>The bagels, I like.</td>
</tr>
<tr>
<td>factive_cl</td>
<td>that Kim left</td>
</tr>
<tr>
<td>root_cl</td>
<td>Kim left.</td>
</tr>
<tr>
<td>cp_cl</td>
<td>whether Kim left</td>
</tr>
</tbody>
</table>
Constructions

Non-clauses

<table>
<thead>
<tr>
<th>fin_vp</th>
<th>went home</th>
</tr>
</thead>
<tbody>
<tr>
<td>nf_hc_ph</td>
<td>going home</td>
</tr>
<tr>
<td>bare_nom_ph</td>
<td>old bagels</td>
</tr>
<tr>
<td>bare_adj_ph</td>
<td>very sad</td>
</tr>
<tr>
<td>nom_int_ph</td>
<td>who left</td>
</tr>
<tr>
<td>cq_np</td>
<td>Your name?</td>
</tr>
</tbody>
</table>
S/decl-hd-su-cl
 NP
 VP/fin-vp
 Pat
 likes Sandy.

S/decl-ns-cl
 VP/nf-hc-ph
 to go to the UK

S/ns-wh-int-cl
 NP
 S/inv-decl-cl
 Whose bagels
 V
 NP
 V
 did
 Pat
 eat

S/repr-int-cl
 S/decl-hd-su-cl
 NP
 VP
 Pat
 V
 NP
 wrote
 WHAT
Constructions

Jaccard distance

![Diagram of Jaccard distance with nodes and edges labeled with CLAUSALITY and HEADEDNESS properties.]

Tuesday, May 22, 12
Constructions

The diversity is among constructions is lower than would be expected if headedness and clausality really were orthogonal dimensions.

A flat differential network captures most (all?) of the generalizations that G&S’s complex multiple inheritance hierarchy does.

Differential and hierarchical analyses aren’t mutually exclusive options (cf. traits).

Approaching the problem of organizing constructions quantitatively may reveal patterns that aren’t otherwise obvious.
Prospects

Differential networks are a viable alternative to taxonomic representations

How far can they be extended?

Richer datasets

Other lexicalist frameworks (Network Morphology, Word Grammar)

How can they be refined?

Families as a step towards types (Astudillo and Schilling 1993)

No reason to limit focus to spanning trees (Ackerman and Bonami)

Types, tokens, exemplars (Abbot-Smith and Tomasello 2006, Baayen et al. 2007)